Files and Directories

Objectives

  • Explain the similarities and differences between a file and a directory.
  • Translate an absolute path into a relative path and vice versa.
  • Construct absolute and relative paths that identify specific files and directories.
  • Explain the steps in the shell’s read-run-print cycle.
  • Identify the actual command, flags, and filenames in a command-line call.
  • Demonstrate the use of tab completion, and explain its advantages.

Cheat Sheet

Quick guide to shell.

Before you begin

Windows

You need to install git bash.

After installing git bash, run the Software Carpentry installer, which installs tools inside of gitbash that make it more usable.

Mac OS

You can probably get away without installing anything for the class; the unix-like tools you need are built in.

Just in case something important does not work, you may need the (free) apple Xcode Developer bundle. This should be available for free from the apple store or from Apple’s developer site.

Nelle’s files

In these lessons, we’re going to explore Nelle’s files. You can download the example files and directories which Nelle is using, so that you can explore the same files as described in the lesson. To do this, download the zipped filesystem:

Download filesystem.zip.

Unpack the zipped files - on Windows or a Mac, you can probably just double-click or click the downloaded file to unpack it.

Open a terminal window. This will be “Terminal” on OSX and “Git Bash” on Windows. You should see a black (or white) text window with a dollar sign in it.

Try typing

$ cd Downloads
$ unzip filesystem.zip

Once you have Nelle’s files and directories, change to Nelle’s home directory to begin, by typing in the cd command:

$ cd ~/Downloads/filesystem/users/nelle

Don’t worry if you don’t know what this command means yet! We will cover it soon.

Type the command whoami, then press the Enter key (sometimes marked Return) to send the command to the shell. The command’s output is the ID of the current user, i.e., it shows us who the shell thinks we are:

$ whoami
nelle
$

More specifically, when we type whoami the shell:

  1. finds a program called whoami,
  2. runs that program,
  3. displays that program’s output, then
  4. displays a new prompt to tell us that it’s ready for more commands.

Next, let’s find out where we are by running a command called pwd (which stands for “print working directory”). At any moment, our current working directory is our current default directory, i.e., the directory that the computer assumes we want to run commands in unless we explicitly specify something else. Here, the computer’s response is /users/nelle, which is Nelle’s home directory:

$ pwd
/users/nelle/Downloads/filesystem/users/nelle
$

To understand what a “home directory” is, let’s have a look at how the file system as a whole is organized. At the top is the root directory that holds everything else. We refer to it using a slash character / on its own; this is the leading slash in /users/nelle.

Inside that directory are several other directories: bin (which is where some built-in programs are stored), data (for miscellaneous data files), users (where users’ personal directories are located), tmp (for temporary files that don’t need to be stored long-term), and so on:

We know that our current working directory /users/nelle is stored inside /users because /users is the first part of its name. Similarly, we know that /users is stored inside the root directory / because its name begins with /.

Let’s see what’s in Nelle’s home directory by running ls, which stands for “listing”:

$ ls
creatures  molecules           pizza.cfg
data       north-pacific-gyre  solar.pdf
Desktop    notes.txt           writing

ls prints the names of the files and directories in the current directory in alphabetical order, arranged neatly into columns. We can make its output more comprehensible by using the flag -F, which tells ls to add a trailing / to the names of directories:

$ ls -F
creatures/  molecules/           pizza.cfg
data/       north-pacific-gyre/  solar.pdf
Desktop/    notes.txt            writing/

Here, we can see that filesystem/users/nelle contains seven sub-directories. The names that don’t have trailing slashes, like notes.txt, pizza.cfg, and solar.pdf, are plain old files. And note that there is a space between ls and -F: without it, the shell thinks we’re trying to run a command called ls-F, which doesn’t exist.

What’s In A Name?

You may have noticed that all of Nelle’s files’ names are “something dot something”. This is just a convention: we can call a file mythesis or almost anything else we want. However, most people use two-part names most of the time to help them (and their programs) tell different kinds of files apart. The second part of such a name is called the filename extension, and indicates what type of data the file holds: .txt signals a plain text file, .pdf indicates a PDF document, .cfg is a configuration file full of parameters for some program or other, and so on.

This is just a convention, albeit an important one. Files contain bytes: it’s up to us and our programs to interpret those bytes according to the rules for PDF documents, images, and so on.

Naming a PNG image of a whale as whale.mp3 doesn’t somehow magically turn it into a recording of whalesong, though it might cause the operating system to try to open it with a music player when someone double-clicks it.

Now let’s take a look at what’s in Nelle’s data directory by running ls -F data, i.e., the command ls with the arguments -F and data. The second argument—the one without a leading dash—tells ls that we want a listing of something other than our current working directory:

$ ls -F data
amino-acids.txt   elements/     morse.txt
pdb/              planets.txt   sunspot.txt

The output shows us that there are four text files and two sub-sub-directories. Organizing things hierarchically in this way helps us keep track of our work: it’s possible to put hundreds of files in our home directory, just as it’s possible to pile hundreds of printed papers on our desk, but it’s a self-defeating strategy.

Notice, by the way that we spelled the directory name data. It doesn’t have a trailing slash: that’s added to directory names by ls when we use the -F flag to help us tell things apart. And it doesn’t begin with a slash because it’s a relative path, i.e., it tells ls how to find something from where we are, rather than from the root of the file system.

If we run ls -F /data (with a leading slash) we get a different answer, because /data is an absolute path:

$ ls -F /data
access.log    backup/    hardware.cfg
network.cfg

The leading / tells the computer to follow the path from the root of the filesystem, so it always refers to exactly one directory, no matter where we are when we run the command.

What if we want to change our current working directory? Before we do this, pwd shows us that we’re in filesystem/users/nelle, and ls without any arguments shows us that directory’s contents:

$ pwd
/Users/SWC/Downloads/filesystem/users/nelle
$ ls
creatures  molecules           pizza.cfg
data       north-pacific-gyre  solar.pdf
Desktop    notes.txt           writing

We can use cd followed by a directory name to change our working directory. cd stands for “change directory”, which is a bit misleading: the command doesn’t change the directory, it changes the shell’s idea of what directory we are in.

$ cd data

cd doesn’t print anything, but if we run pwd after it, we can see that we are now in /Users/SWC/Downloads/filesystem/users/nelle/data. If we run ls without arguments now, it lists the contents of /Users/SWC/Downloads/filesystem/users/nelle/data, because that’s where we now are:

$ pwd
/Users/SWC/Downloads/filesystem/users/nelle/data
$ ls -F
amino-acids.txt   elements/     morse.txt
pdb/              planets.txt   sunspot.txt

We now know how to go down the directory tree: how do we go up? We could use an absolute path:

$ cd /users/nelle

but it’s almost always simpler to use cd .. to go up one level:

$ pwd
/users/nelle/data
$ cd ..

.. is a special directory name meaning “the directory containing this one”, or more succinctly, the parent of the current directory. Sure enough, if we run pwd after running cd .., we’re back in /users/nelle:

$ pwd
/users/nelle

The special directory .. doesn’t usually show up when we run ls. If we want to display it, we can give ls the -a flag:

$ ls -F -a
./          Desktop/             pizza.cfg
../         molecules/           solar.pdf
creatures/  north-pacific-gyre/  writing/
data/       notes.txt

-a stands for “show all”; it forces ls to show us file and directory names that begin with ., such as .. (which, if we’re in /users/nelle, refers to the /users directory). As you can see, it also displays another special directory that’s just called ., which means “the current working directory”. It may seem redundant to have a name for it, but we’ll see some uses for it soon.

Orthogonality

The special names . and .. don’t belong to ls; they are interpreted the same way by every program. For example, if we are in filesystem/users/nelle/data, the command ls .. will give us a listing of filesystem/users/nelle. When the meanings of the parts are the same no matter how they’re combined, programmers say they are orthogonal: Orthogonal systems tend to be easier for people to learn because there are fewer special cases and exceptions to keep track of.

Nelle’s Pipeline: Organizing Files

Knowing just this much about files and directories, Nelle is ready to organize the files that the protein assay machine will create. First, she creates a directory called north-pacific-gyre (to remind herself where the data came from). Inside that, she creates a directory called 2012-07-03, which is the date she started processing the samples. She used to use names like conference-paper and revised-results, but she found them hard to understand after a couple of years. (The final straw was when she found herself creating a directory called revised-revised-results-3.)

Nelle names her directories “year-month-day”, with leading zeroes for months and days, because the shell displays file and directory names in alphabetical order. If she used month names, December would come before July; if she didn’t use leading zeroes, November (‘11’) would come before July (‘7’). This is the purpose of ISO standard 8601 Representation of dates and times

Each of her physical samples is labelled according to her lab’s convention with a unique ten-character ID, such as “NENE01729A”. This is what she used in her collection log to record the location, time, depth, and other characteristics of the sample, so she decides to use it as part of each data file’s name. Since the assay machine’s output is plain text, she will call her files NENE01729A.txt, NENE01812A.txt, and so on. All 1520 files will go into the same directory.

If she is in her home directory, Nelle can see what files she has using the command:

$ ls north-pacific-gyre/2012-07-03/

This is a lot to type, but she can let the shell do most of the work. If she types:

$ ls nor

and then presses tab, the shell automatically completes the directory name for her:

$ ls north-pacific-gyre/

If she presses tab again, Bash will add 2012-07-03/ to the command, since it’s the only possible completion. Pressing tab again does nothing, since there are 1520 possibilities; pressing tab twice brings up a list of all the files, and so on. This is called tab completion, and we will see it in many other tools as we go on.

Key Points

  • The file system is responsible for managing information on the disk.
  • Information is stored in files, which are stored in directories (folders).
  • Directories can also store other directories, which forms a directory tree.
  • / on its own is the root directory of the whole filesystem.
  • A relative path specifies a location starting from the current location.
  • An absolute path specifies a location from the root of the filesystem.
  • Directory names in a path are separated with ‘/’ on Unix, but ‘\’ on Windows.
  • ‘..’ means “the directory above the current one”; ‘.’ on its own means “the current directory”.
  • Most files’ names are something.extension. The extension isn’t required, and doesn’t guarantee anything, but is normally used to indicate the type of data in the file.
  • Most commands take options (flags) which begin with a ‘-‘.

Exercises

If pwd displays /users/thing, what will ls ../backup display?

  1. ../backup: No such file or directory
  2. 2012-12-01 2013-01-08 2013-01-27
  3. 2012-12-01/ 2013-01-08/ 2013-01-27/
  4. original pnas_final pnas_sub

If pwd displays /users/backup, and -r tells ls to display things in reverse order, what command will display:

pnas-sub/ pnas-final/ original/
  1. ls pwd
  2. ls -r -F
  3. ls -r -F /users/backup
  4. Either #2 or #3 above, but not #1.

What does the command cd without a directory name do?

  1. It has no effect.
  2. It changes the working directory to /.
  3. It changes the working directory to the user’s home directory.
  4. It produces an error message.

What does the command ls do when used with the -s and -h arguments?

Edit this document!

This file can be edited directly through the Web. Anyone can update and fix errors in this document with few clicks -- no downloads needed.

  1. Go to Files and Directories on GitHub.
  2. Edit files using GitHub's text editor in your web browser (see the 'Edit' tab on the top right of the file)
  3. Fill in the Commit message text box at the bottom of the page describing why you made the changes. Press the Propose file change button next to it when done.
  4. Then click Send a pull request.
  5. Your changes are now queued for review under the project's Pull requests tab on GitHub!

For an introduction to the documentation format please see the reST primer.